From 1f32952d0066a9dc1ff1482cef48c3cbe0acb663 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 10:45:45 +0100 Subject: [PATCH 01/14] fix(ai): redact message parts content of type blob --- sentry_sdk/ai/utils.py | 51 +++++++++++++++++ tests/test_ai_monitoring.py | 106 +++++++++++++++++++++++++++++++++++- 2 files changed, 156 insertions(+), 1 deletion(-) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 1d2b4483c9..73155b0305 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -5,6 +5,8 @@ from sys import getsizeof from typing import TYPE_CHECKING +from sentry_sdk._types import SENSITIVE_DATA_SUBSTITUTE + if TYPE_CHECKING: from typing import Any, Callable, Dict, List, Optional, Tuple @@ -141,6 +143,53 @@ def _find_truncation_index(messages: "List[Dict[str, Any]]", max_bytes: int) -> return 0 +def redact_blob_message_parts(messages): + # type: (List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], int] + """ + Redact blob message parts from the messages, by removing the "content" key. + e.g: + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text" + }, + { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "data:image/jpeg;base64,..." + } + ] + } + becomes: + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text" + }, + { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "[Filtered]" + } + ] + } + """ + + for message in messages: + content = message.get("content") + if isinstance(content, list): + for item in content: + if item.get("type") == "blob": + item["content"] = SENSITIVE_DATA_SUBSTITUTE + return messages + + def truncate_messages_by_size( messages: "List[Dict[str, Any]]", max_bytes: int = MAX_GEN_AI_MESSAGE_BYTES, @@ -186,6 +235,8 @@ def truncate_and_annotate_messages( if not messages: return None + messages = redact_blob_message_parts(messages) + truncated_messages, removed_count = truncate_messages_by_size(messages, max_bytes) if removed_count > 0: scope._gen_ai_original_message_count[span.span_id] = len(messages) diff --git a/tests/test_ai_monitoring.py b/tests/test_ai_monitoring.py index 8d3d4ba204..e9f3712cd3 100644 --- a/tests/test_ai_monitoring.py +++ b/tests/test_ai_monitoring.py @@ -4,7 +4,7 @@ import pytest import sentry_sdk -from sentry_sdk._types import AnnotatedValue +from sentry_sdk._types import AnnotatedValue, SENSITIVE_DATA_SUBSTITUTE from sentry_sdk.ai.monitoring import ai_track from sentry_sdk.ai.utils import ( MAX_GEN_AI_MESSAGE_BYTES, @@ -13,6 +13,7 @@ truncate_and_annotate_messages, truncate_messages_by_size, _find_truncation_index, + redact_blob_message_parts, ) from sentry_sdk.serializer import serialize from sentry_sdk.utils import safe_serialize @@ -542,3 +543,106 @@ def __init__(self): assert isinstance(messages_value, AnnotatedValue) assert messages_value.metadata["len"] == stored_original_length assert len(messages_value.value) == len(truncated_messages) + + +class TestRedactBlobMessageParts: + def test_redacts_single_blob_content(self): + """Test that blob content is redacted in a message with single blob part""" + messages = [ + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text", + }, + { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "", + }, + ], + } + ] + + result = redact_blob_message_parts(messages) + + assert result == messages # Returns the same list + assert ( + messages[0]["content"][0]["text"] + == "How many ponies do you see in the image?" + ) + assert messages[0]["content"][0]["type"] == "text" + assert messages[0]["content"][1]["type"] == "blob" + assert messages[0]["content"][1]["modality"] == "image" + assert messages[0]["content"][1]["mime_type"] == "image/jpeg" + assert messages[0]["content"][1]["content"] == SENSITIVE_DATA_SUBSTITUTE + + def test_redacts_multiple_blob_parts(self): + """Test that multiple blob parts in a single message are all redacted""" + messages = [ + { + "role": "user", + "content": [ + {"text": "Compare these images", "type": "text"}, + { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "_image", + }, + { + "type": "blob", + "modality": "image", + "mime_type": "image/png", + "content": "_image", + }, + ], + } + ] + + result = redact_blob_message_parts(messages) + + assert result == messages + assert messages[0]["content"][0]["text"] == "Compare these images" + assert messages[0]["content"][1]["content"] == SENSITIVE_DATA_SUBSTITUTE + assert messages[0]["content"][2]["content"] == SENSITIVE_DATA_SUBSTITUTE + + def test_redacts_blobs_in_multiple_messages(self): + """Test that blob parts are redacted across multiple messages""" + messages = [ + { + "role": "user", + "content": [ + {"text": "First message", "type": "text"}, + { + "type": "blob", + "modality": "image", + "content": "", + }, + ], + }, + { + "role": "assistant", + "content": "I see the image.", + }, + { + "role": "user", + "content": [ + {"text": "Second message", "type": "text"}, + { + "type": "blob", + "modality": "image", + "content": "", + }, + ], + }, + ] + + result = redact_blob_message_parts(messages) + + assert result == messages + assert messages[0]["content"][1]["content"] == SENSITIVE_DATA_SUBSTITUTE + assert messages[1]["content"] == "I see the image." # Unchanged + assert messages[2]["content"][1]["content"] == SENSITIVE_DATA_SUBSTITUTE From 795bcea241f7777e646a4da14c870a3049bdbe90 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 11:05:04 +0100 Subject: [PATCH 02/14] fix(ai): skip non dict messages --- sentry_sdk/ai/utils.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 73155b0305..ae507e898b 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -182,6 +182,9 @@ def redact_blob_message_parts(messages): """ for message in messages: + if not isinstance(message, dict): + continue + content = message.get("content") if isinstance(content, list): for item in content: From a623e137d26e982c0d85258256c0ba013f9ecb24 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 11:21:43 +0100 Subject: [PATCH 03/14] fix(ai): typing --- sentry_sdk/ai/utils.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index ae507e898b..1b61c7a113 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -143,8 +143,9 @@ def _find_truncation_index(messages: "List[Dict[str, Any]]", max_bytes: int) -> return 0 -def redact_blob_message_parts(messages): - # type: (List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], int] +def redact_blob_message_parts( + messages: "List[Dict[str, Any]]", +) -> "List[Dict[str, Any]]": """ Redact blob message parts from the messages, by removing the "content" key. e.g: From 3d3ce5bbdca43f14194edbbbee11d3b6dcd6d8a3 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 11:37:12 +0100 Subject: [PATCH 04/14] fix(ai): content items may not be dicts --- sentry_sdk/ai/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 1b61c7a113..78a64ab737 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -189,7 +189,7 @@ def redact_blob_message_parts( content = message.get("content") if isinstance(content, list): for item in content: - if item.get("type") == "blob": + if isinstance(item, dict) and item.get("type") == "blob": item["content"] = SENSITIVE_DATA_SUBSTITUTE return messages From ce29e47a2aa0cf7b3bb58a0bfc4c47cc781bfe5b Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 12:21:28 +0100 Subject: [PATCH 05/14] fix(integrations): OpenAI input messages are now being converted to the schema we expect for the `gen_ai.request.messages` --- sentry_sdk/integrations/openai.py | 66 ++++++++++++++++++++++++++++++- 1 file changed, 65 insertions(+), 1 deletion(-) diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index 53d464c3c4..79724f389d 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -18,7 +18,7 @@ safe_serialize, ) -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Dict if TYPE_CHECKING: from typing import Any, Iterable, List, Optional, Callable, AsyncIterator, Iterator @@ -177,6 +177,68 @@ def _calculate_token_usage( ) +def _convert_message_parts(messages: "List[Dict[str, Any]]") -> "List[Dict[str, Any]]": + """ + Convert the message parts from OpenAI format to the `gen_ai.request.messages` format. + e.g: + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text" + }, + { + "type": "image_url", + "image_url": { + "url": "data:image/jpeg;base64,...", + "detail": "high" + } + } + ] + } + becomes: + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text" + }, + { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "data:image/jpeg;base64,..." + } + ] + } + """ + + def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": + if item.get("type") == "image_url": + image_url = item.get("image_url") or {} + if image_url.get("url", "").startswith("data:"): + return { + "type": "blob", + "modality": "image", + "mime_type": item["image_url"]["url"].split(";base64,")[0], + "content": item["image_url"]["url"].split(";base64,")[1], + } + else: + return { + "type": "uri", + "uri": item["image_url"]["url"], + } + return item + + for message in messages: + content = message.get("content") + if isinstance(content, list): + message["content"] = [_map_item(item) for item in content] + return messages + + def _set_input_data( span: "Span", kwargs: "dict[str, Any]", @@ -198,6 +260,8 @@ def _set_input_data( and integration.include_prompts ): normalized_messages = normalize_message_roles(messages) + normalized_messages = _convert_message_parts(normalized_messages) + scope = sentry_sdk.get_current_scope() messages_data = truncate_and_annotate_messages(normalized_messages, span, scope) if messages_data is not None: From 7074f0b78cd9b33acb552c93512c97c73922faf0 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 17 Dec 2025 13:50:47 +0100 Subject: [PATCH 06/14] test(integrations): add test for message conversion --- tests/integrations/openai/test_openai.py | 72 ++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/tests/integrations/openai/test_openai.py b/tests/integrations/openai/test_openai.py index 814289c887..f4f616fad3 100644 --- a/tests/integrations/openai/test_openai.py +++ b/tests/integrations/openai/test_openai.py @@ -43,6 +43,7 @@ from sentry_sdk.integrations.openai import ( OpenAIIntegration, _calculate_token_usage, + _convert_message_parts, ) from sentry_sdk.ai.utils import MAX_GEN_AI_MESSAGE_BYTES from sentry_sdk._types import AnnotatedValue @@ -1509,6 +1510,77 @@ def test_openai_message_role_mapping(sentry_init, capture_events): assert "ai" not in roles +def test_convert_message_parts_image_url_to_blob(): + """Test that OpenAI image_url message parts are correctly converted to blob format""" + messages = [ + { + "role": "user", + "content": [ + { + "text": "How many ponies do you see in the image?", + "type": "text", + }, + { + "type": "image_url", + "image_url": { + "url": "", + "detail": "high", + }, + }, + ], + } + ] + + converted = _convert_message_parts(messages) + + assert len(converted) == 1 + assert converted[0]["role"] == "user" + assert isinstance(converted[0]["content"], list) + assert len(converted[0]["content"]) == 2 + + # First item (text) should remain unchanged + assert converted[0]["content"][0] == { + "text": "How many ponies do you see in the image?", + "type": "text", + } + + # Second item (image_url) should be converted to blob format + blob_item = converted[0]["content"][1] + assert blob_item["type"] == "blob" + assert blob_item["modality"] == "image" + assert blob_item["mime_type"] == "... + try: + header, content = url.split(",", 1) + mime_type = header.split(":")[1].split(";")[0] if ":" in header else "" + return { + "type": "blob", + "modality": "image", + "mime_type": mime_type, + "content": content, + } + except (ValueError, IndexError): + # If parsing fails, return as URI + return { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": url, + } + else: + return { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": url, + } + + # Handle input_audio (OpenAI audio input format) + if part_type == "input_audio": + input_audio = content_part.get("input_audio", {}) + audio_format = input_audio.get("format", "") + mime_type = f"audio/{audio_format}" if audio_format else "" + return { + "type": "blob", + "modality": "audio", + "mime_type": mime_type, + "content": input_audio.get("data", ""), + } + + # Handle image_file (Assistants API file-based images) + if part_type == "image_file": + image_file = content_part.get("image_file", {}) + return { + "type": "file", + "modality": "image", + "mime_type": "", + "file_id": image_file.get("file_id", ""), + } + + # Handle file (document attachments) + if part_type == "file": + file_data = content_part.get("file", {}) + return { + "type": "file", + "modality": "document", + "mime_type": "", + "file_id": file_data.get("file_id", ""), + } + + return content_part + + +def _transform_openai_agents_message_content(content: "Any") -> "Any": + """ + Transform OpenAI Agents message content, handling both string content and + list of content parts. + """ + if isinstance(content, str): + return content + + if isinstance(content, (list, tuple)): + transformed = [] + for item in content: + if isinstance(item, dict): + transformed.append(_transform_openai_agents_content_part(item)) + else: + transformed.append(item) + return transformed + + return content + + def _capture_exception(exc: "Any") -> None: set_span_errored() @@ -128,13 +248,15 @@ def _set_input_data( if "role" in message: normalized_role = normalize_message_role(message.get("role")) content = message.get("content") + # Transform content to handle multimodal data (images, audio, files) + transformed_content = _transform_openai_agents_message_content(content) request_messages.append( { "role": normalized_role, "content": ( - [{"type": "text", "text": content}] - if isinstance(content, str) - else content + [{"type": "text", "text": transformed_content}] + if isinstance(transformed_content, str) + else transformed_content ), } ) diff --git a/tests/integrations/openai_agents/test_openai_agents.py b/tests/integrations/openai_agents/test_openai_agents.py index c5cb25dfee..9eede6c54b 100644 --- a/tests/integrations/openai_agents/test_openai_agents.py +++ b/tests/integrations/openai_agents/test_openai_agents.py @@ -9,7 +9,12 @@ from sentry_sdk import start_span from sentry_sdk.consts import SPANDATA from sentry_sdk.integrations.openai_agents import OpenAIAgentsIntegration -from sentry_sdk.integrations.openai_agents.utils import _set_input_data, safe_serialize +from sentry_sdk.integrations.openai_agents.utils import ( + _set_input_data, + safe_serialize, + _transform_openai_agents_content_part, + _transform_openai_agents_message_content, +) from sentry_sdk.utils import parse_version import agents @@ -1998,3 +2003,90 @@ def test_openai_agents_message_truncation(sentry_init, capture_events): assert len(parsed_messages) == 2 assert "small message 4" in str(parsed_messages[0]) assert "small message 5" in str(parsed_messages[1]) + + +def test_transform_image_url_to_blob(): + """Test that OpenAI image_url with data URI is converted to blob format.""" + content_part = { + "type": "image_url", + "image_url": { + "url": "", + "detail": "high", + }, + } + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQSkZJRgABAQAAAQABAAD", + } + + +def test_transform_image_url_to_uri(): + """Test that OpenAI image_url with HTTP URL is converted to uri format.""" + content_part = { + "type": "image_url", + "image_url": { + "url": "https://example.com/image.jpg", + "detail": "low", + }, + } + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": "https://example.com/image.jpg", + } + + +def test_transform_message_content_with_image(): + """Test that message content with image is properly transformed.""" + content = [ + {"type": "text", "text": "What is in this image?"}, + { + "type": "image_url", + "image_url": { + "url": "", + }, + }, + ] + result = _transform_openai_agents_message_content(content) + assert len(result) == 2 + assert result[0] == {"type": "text", "text": "What is in this image?"} + assert result[1] == { + "type": "blob", + "modality": "image", + "mime_type": "image/png", + "content": "iVBORw0KGgoAAAANSUhEUg==", + } + + +def test_transform_input_image_to_blob(): + """Test that OpenAI Agents SDK input_image format is converted to blob format.""" + # OpenAI Agents SDK uses input_image type with image_url as a direct string + content_part = { + "type": "input_image", + "image_url": "", + } + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/png", + "content": "iVBORw0KGgoAAAANSUhEUg==", + } + + +def test_transform_input_text_to_text(): + """Test that OpenAI Agents SDK input_text format is normalized to text format.""" + content_part = { + "type": "input_text", + "text": "Hello, world!", + } + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "text", + "text": "Hello, world!", + } From c1a2239c7946ef95703c22bb6d879deed7368895 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Thu, 8 Jan 2026 15:19:04 +0100 Subject: [PATCH 08/14] feat(ai): implement parse_data_uri function and integrate it into OpenAI message handling --- sentry_sdk/ai/utils.py | 33 +++++++++ sentry_sdk/integrations/openai.py | 29 +++++--- .../integrations/openai_agents/utils.py | 7 +- tests/integrations/openai/test_openai.py | 30 ++++++++- tests/test_ai_monitoring.py | 67 +++++++++++++++++++ 5 files changed, 153 insertions(+), 13 deletions(-) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 78a64ab737..6fdf763ad6 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -40,6 +40,39 @@ class GEN_AI_ALLOWED_MESSAGE_ROLES: GEN_AI_MESSAGE_ROLE_MAPPING[source_role] = target_role +def parse_data_uri(url): + # type: (str) -> Tuple[str, str] + """ + Parse a data URI and return (mime_type, content). + + Data URI format (RFC 2397): data:[][;base64], + + Examples: + ... → ("image/jpeg", "/9j/4AAQ...") + data:text/plain,Hello → ("text/plain", "Hello") + data:;base64,SGVsbG8= → ("", "SGVsbG8=") + + Raises: + ValueError: If the URL is not a valid data URI (missing comma separator) + """ + if "," not in url: + raise ValueError("Invalid data URI: missing comma separator") + + header, content = url.split(",", 1) + + # Extract mime type from header + # Format: "data:[;param1][;param2]..." e.g. "data:image/jpeg;base64" + # Remove "data:" prefix, then take everything before the first semicolon + if header.startswith("data:"): + mime_part = header[5:] # Remove "data:" prefix + else: + mime_part = header + + mime_type = mime_part.split(";")[0] + + return mime_type, content + + def _normalize_data(data: "Any", unpack: bool = True) -> "Any": # convert pydantic data (e.g. OpenAI v1+) to json compatible format if hasattr(data, "model_dump"): diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index 79724f389d..fc41d79bf8 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -6,6 +6,7 @@ from sentry_sdk.ai.utils import ( set_data_normalized, normalize_message_roles, + parse_data_uri, truncate_and_annotate_messages, ) from sentry_sdk.consts import SPANDATA @@ -218,21 +219,33 @@ def _convert_message_parts(messages: "List[Dict[str, Any]]") -> "List[Dict[str, def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": if item.get("type") == "image_url": image_url = item.get("image_url") or {} - if image_url.get("url", "").startswith("data:"): - return { - "type": "blob", - "modality": "image", - "mime_type": item["image_url"]["url"].split(";base64,")[0], - "content": item["image_url"]["url"].split(";base64,")[1], - } + url = image_url.get("url", "") + if url.startswith("data:"): + try: + mime_type, content = parse_data_uri(url) + return { + "type": "blob", + "modality": "image", + "mime_type": mime_type, + "content": content, + } + except ValueError: + # If parsing fails, return as URI + return { + "type": "uri", + "modality": "image", + "uri": url, + } else: return { "type": "uri", - "uri": item["image_url"]["url"], + "uri": url, } return item for message in messages: + if not isinstance(message, dict): + continue content = message.get("content") if isinstance(content, list): message["content"] = [_map_item(item) for item in content] diff --git a/sentry_sdk/integrations/openai_agents/utils.py b/sentry_sdk/integrations/openai_agents/utils.py index 1f78856512..a95fac422a 100644 --- a/sentry_sdk/integrations/openai_agents/utils.py +++ b/sentry_sdk/integrations/openai_agents/utils.py @@ -2,6 +2,7 @@ from sentry_sdk.ai.utils import ( GEN_AI_ALLOWED_MESSAGE_ROLES, normalize_message_roles, + parse_data_uri, set_data_normalized, normalize_message_role, truncate_and_annotate_messages, @@ -66,17 +67,15 @@ def _transform_openai_agents_content_part( url = content_part.get("image_url", "") if url.startswith("data:"): - # Parse data URI: ... try: - header, content = url.split(",", 1) - mime_type = header.split(":")[1].split(";")[0] if ":" in header else "" + mime_type, content = parse_data_uri(url) return { "type": "blob", "modality": "image", "mime_type": mime_type, "content": content, } - except (ValueError, IndexError): + except ValueError: # If parsing fails, return as URI return { "type": "uri", diff --git a/tests/integrations/openai/test_openai.py b/tests/integrations/openai/test_openai.py index f4f616fad3..3f971afaee 100644 --- a/tests/integrations/openai/test_openai.py +++ b/tests/integrations/openai/test_openai.py @@ -1548,7 +1548,7 @@ def test_convert_message_parts_image_url_to_blob(): blob_item = converted[0]["content"][1] assert blob_item["type"] == "blob" assert blob_item["modality"] == "image" - assert blob_item["mime_type"] == "data:image/jpeg" + assert blob_item["mime_type"] == "image/jpeg" assert blob_item["content"] == "/9j/4AAQSkZJRg==" # Verify the original image_url structure is replaced assert "image_url" not in blob_item @@ -1581,6 +1581,34 @@ def test_convert_message_parts_image_url_to_uri(): assert "image_url" not in uri_item +def test_convert_message_parts_malformed_data_uri(): + """Test that malformed data URIs are handled gracefully without crashing""" + messages = [ + { + "role": "user", + "content": [ + { + "type": "image_url", + "image_url": { + # Malformed: missing ;base64, and comma separator + "url": "" + mime_type, content = parse_data_uri(url) + assert mime_type == "image/jpeg" + assert content == "/9j/4AAQSkZJRg==" + + def test_png_image(self): + """Test parsing a PNG image data URI.""" + url = "" + mime_type, content = parse_data_uri(url) + assert mime_type == "image/png" + assert content == "iVBORw0KGgo=" + + def test_plain_text_without_base64(self): + """Test parsing a plain text data URI without base64 encoding.""" + url = "data:text/plain,Hello%20World" + mime_type, content = parse_data_uri(url) + assert mime_type == "text/plain" + assert content == "Hello%20World" + + def test_no_mime_type_with_base64(self): + """Test parsing a data URI with no mime type but base64 encoding.""" + url = "data:;base64,SGVsbG8=" + mime_type, content = parse_data_uri(url) + assert mime_type == "" + assert content == "SGVsbG8=" + + def test_no_mime_type_no_base64(self): + """Test parsing a minimal data URI.""" + url = "data:,Hello" + mime_type, content = parse_data_uri(url) + assert mime_type == "" + assert content == "Hello" + + def test_content_with_commas(self): + """Test that content with commas is handled correctly.""" + url = "data:text/csv,a,b,c,d" + mime_type, content = parse_data_uri(url) + assert mime_type == "text/csv" + assert content == "a,b,c,d" + + def test_missing_comma_raises_value_error(self): + """Test that a data URI without a comma raises ValueError.""" + url = "data:image/jpeg" + with pytest.raises(ValueError, match="missing comma separator"): + parse_data_uri(url) + + def test_empty_content(self): + """Test parsing a data URI with empty content.""" + url = "data:text/plain," + mime_type, content = parse_data_uri(url) + assert mime_type == "text/plain" + assert content == "" + + def test_mime_type_with_charset(self): + """Test parsing a data URI with charset parameter.""" + url = "data:text/html;charset=utf-8,

Hello

" + mime_type, content = parse_data_uri(url) + assert mime_type == "text/html" + assert content == "

Hello

" From 04b27f4c183b080582f06dc6e8e0d07a23cc12fc Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Tue, 13 Jan 2026 14:17:01 +0100 Subject: [PATCH 09/14] fix: review comment --- sentry_sdk/integrations/openai.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index 5cdd674a93..ea7ee25063 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -220,6 +220,9 @@ def _convert_message_parts(messages: "List[Dict[str, Any]]") -> "List[Dict[str, """ def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": + if not isinstance(item, dict): + return item + if item.get("type") == "image_url": image_url = item.get("image_url") or {} url = image_url.get("url", "") @@ -242,6 +245,7 @@ def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": else: return { "type": "uri", + "modality": "image", "uri": url, } return item From b74bdb9c00f4252cfdf8578bf4eb94864d4b2537 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Wed, 14 Jan 2026 17:19:40 +0100 Subject: [PATCH 10/14] fix(integrations): addressing review comments --- .../integrations/openai_agents/utils.py | 59 ++++++++------- .../openai_agents/test_openai_agents.py | 72 +++++++++++++++++++ 2 files changed, 106 insertions(+), 25 deletions(-) diff --git a/sentry_sdk/integrations/openai_agents/utils.py b/sentry_sdk/integrations/openai_agents/utils.py index a95fac422a..7e31d4621a 100644 --- a/sentry_sdk/integrations/openai_agents/utils.py +++ b/sentry_sdk/integrations/openai_agents/utils.py @@ -56,7 +56,7 @@ def _transform_openai_agents_content_part( if part_type in ("image_url", "input_image"): # Get URL from either format if part_type == "image_url": - image_url = content_part.get("image_url", {}) + image_url = content_part.get("image_url") or {} url = ( image_url.get("url", "") if isinstance(image_url, dict) @@ -64,7 +64,7 @@ def _transform_openai_agents_content_part( ) else: # input_image format has image_url directly - url = content_part.get("image_url", "") + url = content_part.get("image_url") or "" if url.startswith("data:"): try: @@ -93,35 +93,44 @@ def _transform_openai_agents_content_part( # Handle input_audio (OpenAI audio input format) if part_type == "input_audio": - input_audio = content_part.get("input_audio", {}) - audio_format = input_audio.get("format", "") - mime_type = f"audio/{audio_format}" if audio_format else "" - return { - "type": "blob", - "modality": "audio", - "mime_type": mime_type, - "content": input_audio.get("data", ""), - } + input_audio = content_part.get("input_audio") or {} + if isinstance(input_audio, dict): + audio_format = input_audio.get("format", "") + mime_type = f"audio/{audio_format}" if audio_format else "" + return { + "type": "blob", + "modality": "audio", + "mime_type": mime_type, + "content": input_audio.get("data", ""), + } + else: + return content_part # Handle image_file (Assistants API file-based images) if part_type == "image_file": - image_file = content_part.get("image_file", {}) - return { - "type": "file", - "modality": "image", - "mime_type": "", - "file_id": image_file.get("file_id", ""), - } + image_file = content_part.get("image_file") or {} + if isinstance(image_file, dict): + return { + "type": "file", + "modality": "image", + "mime_type": "", + "file_id": image_file.get("file_id", ""), + } + else: + return content_part # Handle file (document attachments) if part_type == "file": - file_data = content_part.get("file", {}) - return { - "type": "file", - "modality": "document", - "mime_type": "", - "file_id": file_data.get("file_id", ""), - } + file_data = content_part.get("file") or {} + if isinstance(file_data, dict): + return { + "type": "file", + "modality": "document", + "mime_type": "", + "file_id": file_data.get("file_id", ""), + } + else: + return content_part return content_part diff --git a/tests/integrations/openai_agents/test_openai_agents.py b/tests/integrations/openai_agents/test_openai_agents.py index 9eede6c54b..43fabb8d60 100644 --- a/tests/integrations/openai_agents/test_openai_agents.py +++ b/tests/integrations/openai_agents/test_openai_agents.py @@ -2005,6 +2005,78 @@ def test_openai_agents_message_truncation(sentry_init, capture_events): assert "small message 5" in str(parsed_messages[1]) +def test_transform_does_not_modify_original(): + """Test that transformation does not modify the original content.""" + import copy + + content_part = { + "type": "image_url", + "image_url": { + "url": "", + "detail": "high", + }, + } + original = copy.deepcopy(content_part) + _transform_openai_agents_content_part(content_part) + assert content_part == original, "Original content_part should not be modified" + + content = [ + {"type": "text", "text": "What is in this image?"}, + { + "type": "image_url", + "image_url": { + "url": "", + }, + }, + ] + original_content = copy.deepcopy(content) + _transform_openai_agents_message_content(content) + assert content == original_content, "Original content list should not be modified" + + +def test_transform_handles_none_values(): + """Test that transformation handles None values gracefully without crashing.""" + # input_image with image_url explicitly set to None - should not crash + content_part = {"type": "input_image", "image_url": None} + result = _transform_openai_agents_content_part(content_part) + assert result == {"type": "uri", "modality": "image", "mime_type": "", "uri": ""} + + # image_url with nested dict set to None - should not crash + content_part = {"type": "image_url", "image_url": None} + result = _transform_openai_agents_content_part(content_part) + assert result == {"type": "uri", "modality": "image", "mime_type": "", "uri": ""} + + # input_audio with None value - gracefully returns empty blob + content_part = {"type": "input_audio", "input_audio": None} + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "blob", + "modality": "audio", + "mime_type": "", + "content": "", + } + + # image_file with None value - gracefully returns empty file reference + content_part = {"type": "image_file", "image_file": None} + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "file", + "modality": "image", + "mime_type": "", + "file_id": "", + } + + # file with None value - gracefully returns empty file reference + content_part = {"type": "file", "file": None} + result = _transform_openai_agents_content_part(content_part) + assert result == { + "type": "file", + "modality": "document", + "mime_type": "", + "file_id": "", + } + + def test_transform_image_url_to_blob(): """Test that OpenAI image_url with data URI is converted to blob format.""" content_part = { From 80809048e19777a1e35c0fcf540b4c2c69082a9a Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Thu, 15 Jan 2026 09:38:25 +0100 Subject: [PATCH 11/14] fix: review comment --- sentry_sdk/integrations/openai.py | 9 ++++- tests/integrations/openai/test_openai.py | 49 ++++++++++++++++++++++++ 2 files changed, 56 insertions(+), 2 deletions(-) diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index ea7ee25063..d848a95575 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -224,8 +224,13 @@ def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": return item if item.get("type") == "image_url": - image_url = item.get("image_url") or {} - url = image_url.get("url", "") + image_url = item.get("image_url") + if isinstance(image_url, str): + url = image_url + elif isinstance(image_url, dict): + url = image_url.get("url", "") + else: + url = "" if url.startswith("data:"): try: mime_type, content = parse_data_uri(url) diff --git a/tests/integrations/openai/test_openai.py b/tests/integrations/openai/test_openai.py index 3f971afaee..6e62fc5ec0 100644 --- a/tests/integrations/openai/test_openai.py +++ b/tests/integrations/openai/test_openai.py @@ -1609,6 +1609,55 @@ def test_convert_message_parts_malformed_data_uri(): assert item["modality"] == "image" +def test_convert_message_parts_image_url_as_string(): + """Test that image_url as a string (instead of dict) is handled gracefully""" + messages = [ + { + "role": "user", + "content": [ + { + "type": "image_url", + # Some implementations pass image_url as a string directly + "image_url": "https://example.com/image.jpg", + }, + ], + } + ] + + # Should not raise an exception + converted = _convert_message_parts(messages) + + assert len(converted) == 1 + item = converted[0]["content"][0] + assert item["type"] == "uri" + assert item["modality"] == "image" + assert item["uri"] == "https://example.com/image.jpg" + + +def test_convert_message_parts_image_url_as_string_data_uri(): + """Test that image_url as a data URI string is correctly converted to blob""" + messages = [ + { + "role": "user", + "content": [ + { + "type": "image_url", + "image_url": "", + }, + ], + } + ] + + converted = _convert_message_parts(messages) + + assert len(converted) == 1 + item = converted[0]["content"][0] + assert item["type"] == "blob" + assert item["modality"] == "image" + assert item["mime_type"] == "image/png" + assert item["content"] == "iVBORw0KGgo=" + + def test_openai_message_truncation(sentry_init, capture_events): """Test that large messages are truncated properly in OpenAI integration.""" sentry_init( From 05b1a7999332c15a6f11594abb2250f8046403b4 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Thu, 15 Jan 2026 12:54:58 +0100 Subject: [PATCH 12/14] fix(integrations): extract text content from OpenAI responses instead of full message dicts - Extract choice.message.content for gen_ai.response.text instead of model_dump() - Add separate gen_ai.response.tool_calls extraction for Chat Completions API - Handle audio transcripts in responses - Extract shared extract_response_output() to ai/utils.py for Responses API output - Refactor OpenAI and OpenAI Agents integrations to use shared utility --- sentry_sdk/ai/utils.py | 40 +++ sentry_sdk/integrations/openai.py | 68 +++-- .../integrations/openai_agents/utils.py | 29 +- tests/integrations/openai/test_openai.py | 263 ++++++++++++++++++ 4 files changed, 351 insertions(+), 49 deletions(-) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 71f7544a1c..afc550331f 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -107,6 +107,46 @@ def set_data_normalized( span.set_data(key, json.dumps(normalized)) +def extract_response_output( + output_items: "Any", +) -> "Tuple[List[Any], List[Dict[str, Any]]]": + """ + Extract response text and tool calls from OpenAI Responses API output. + + This handles the output format from OpenAI's Responses API where each output + item has a `type` field that can be "message" or "function_call". + + Args: + output_items: Iterable of output items from the response + + Returns: + Tuple of (response_texts, tool_calls) where: + - response_texts: List of text strings or dicts for unknown message types + - tool_calls: List of tool call dicts + """ + response_texts = [] # type: List[Any] + tool_calls = [] # type: List[Dict[str, Any]] + + for output in output_items: + if output.type == "function_call": + if hasattr(output, "model_dump"): + tool_calls.append(output.model_dump()) + elif hasattr(output, "dict"): + tool_calls.append(output.dict()) + elif output.type == "message": + for output_message in output.content: + try: + response_texts.append(output_message.text) + except AttributeError: + # Unknown output message type, just return the json + if hasattr(output_message, "model_dump"): + response_texts.append(output_message.model_dump()) + elif hasattr(output_message, "dict"): + response_texts.append(output_message.dict()) + + return response_texts, tool_calls + + def normalize_message_role(role: str) -> str: """ Normalize a message role to one of the 4 allowed gen_ai role values. diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index d848a95575..acbf411ae0 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -4,6 +4,7 @@ from sentry_sdk import consts from sentry_sdk.ai.monitoring import record_token_usage from sentry_sdk.ai.utils import ( + extract_response_output, set_data_normalized, normalize_message_roles, parse_data_uri, @@ -349,14 +350,45 @@ def _set_output_data( if hasattr(response, "choices"): if should_send_default_pii() and integration.include_prompts: - response_text = [ - choice.message.model_dump() - for choice in response.choices - if choice.message is not None - ] + response_text = [] # type: list[str] + tool_calls = [] # type: list[Any] + + for choice in response.choices: + if choice.message is None: + continue + + # Extract text content + content = getattr(choice.message, "content", None) + if content is not None: + response_text.append(content) + + # Extract audio transcript if available + audio = getattr(choice.message, "audio", None) + if audio is not None: + transcript = getattr(audio, "transcript", None) + if transcript is not None: + response_text.append(transcript) + + # Extract tool calls + message_tool_calls = getattr(choice.message, "tool_calls", None) + if message_tool_calls is not None: + for tool_call in message_tool_calls: + if hasattr(tool_call, "model_dump"): + tool_calls.append(tool_call.model_dump()) + elif hasattr(tool_call, "dict"): + tool_calls.append(tool_call.dict()) + if len(response_text) > 0: set_data_normalized(span, SPANDATA.GEN_AI_RESPONSE_TEXT, response_text) + if len(tool_calls) > 0: + set_data_normalized( + span, + SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, + tool_calls, + unpack=False, + ) + _calculate_token_usage(messages, response, span, None, integration.count_tokens) if finish_span: @@ -364,34 +396,18 @@ def _set_output_data( elif hasattr(response, "output"): if should_send_default_pii() and integration.include_prompts: - output_messages: "dict[str, list[Any]]" = { - "response": [], - "tool": [], - } + response_texts, tool_calls = extract_response_output(response.output) - for output in response.output: - if output.type == "function_call": - output_messages["tool"].append(output.dict()) - elif output.type == "message": - for output_message in output.content: - try: - output_messages["response"].append(output_message.text) - except AttributeError: - # Unknown output message type, just return the json - output_messages["response"].append(output_message.dict()) - - if len(output_messages["tool"]) > 0: + if len(tool_calls) > 0: set_data_normalized( span, SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, - output_messages["tool"], + tool_calls, unpack=False, ) - if len(output_messages["response"]) > 0: - set_data_normalized( - span, SPANDATA.GEN_AI_RESPONSE_TEXT, output_messages["response"] - ) + if len(response_texts) > 0: + set_data_normalized(span, SPANDATA.GEN_AI_RESPONSE_TEXT, response_texts) _calculate_token_usage(messages, response, span, None, integration.count_tokens) diff --git a/sentry_sdk/integrations/openai_agents/utils.py b/sentry_sdk/integrations/openai_agents/utils.py index 7e31d4621a..afa16dc609 100644 --- a/sentry_sdk/integrations/openai_agents/utils.py +++ b/sentry_sdk/integrations/openai_agents/utils.py @@ -1,6 +1,7 @@ import sentry_sdk from sentry_sdk.ai.utils import ( GEN_AI_ALLOWED_MESSAGE_ROLES, + extract_response_output, normalize_message_roles, parse_data_uri, set_data_normalized, @@ -300,31 +301,13 @@ def _set_output_data(span: "sentry_sdk.tracing.Span", result: "Any") -> None: if not should_send_default_pii(): return - output_messages: "dict[str, list[Any]]" = { - "response": [], - "tool": [], - } + response_texts, tool_calls = extract_response_output(result.output) - for output in result.output: - if output.type == "function_call": - output_messages["tool"].append(output.dict()) - elif output.type == "message": - for output_message in output.content: - try: - output_messages["response"].append(output_message.text) - except AttributeError: - # Unknown output message type, just return the json - output_messages["response"].append(output_message.dict()) - - if len(output_messages["tool"]) > 0: - span.set_data( - SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, safe_serialize(output_messages["tool"]) - ) + if len(tool_calls) > 0: + span.set_data(SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS, safe_serialize(tool_calls)) - if len(output_messages["response"]) > 0: - set_data_normalized( - span, SPANDATA.GEN_AI_RESPONSE_TEXT, output_messages["response"] - ) + if len(response_texts) > 0: + set_data_normalized(span, SPANDATA.GEN_AI_RESPONSE_TEXT, response_texts) def _create_mcp_execute_tool_spans( diff --git a/tests/integrations/openai/test_openai.py b/tests/integrations/openai/test_openai.py index 6e62fc5ec0..10cf625ab7 100644 --- a/tests/integrations/openai/test_openai.py +++ b/tests/integrations/openai/test_openai.py @@ -17,6 +17,10 @@ from openai.types.chat import ChatCompletion, ChatCompletionMessage, ChatCompletionChunk from openai.types.chat.chat_completion import Choice from openai.types.chat.chat_completion_chunk import ChoiceDelta, Choice as DeltaChoice +from openai.types.chat.chat_completion_message_tool_call import ( + ChatCompletionMessageToolCall, + Function as ToolCallFunction, +) from openai.types.create_embedding_response import Usage as EmbeddingTokenUsage SKIP_RESPONSES_TESTS = False @@ -1708,3 +1712,262 @@ def test_openai_message_truncation(sentry_init, capture_events): if SPANDATA.GEN_AI_REQUEST_MESSAGES in span_meta: messages_meta = span_meta[SPANDATA.GEN_AI_REQUEST_MESSAGES] assert "len" in messages_meta.get("", {}) + + +def test_response_text_is_string_not_dict(sentry_init, capture_events): + """Test that gen_ai.response.text is a string, not a message dict. + + With set_data_normalized, a single-element list is unpacked to the element, + so ["the model response"] becomes just "the model response". + """ + sentry_init( + integrations=[OpenAIIntegration(include_prompts=True)], + traces_sample_rate=1.0, + send_default_pii=True, + ) + events = capture_events() + + client = OpenAI(api_key="z") + client.chat.completions._post = mock.Mock(return_value=EXAMPLE_CHAT_COMPLETION) + + with start_transaction(name="openai tx"): + client.chat.completions.create( + model="some-model", messages=[{"role": "system", "content": "hello"}] + ) + + (event,) = events + span = event["spans"][0] + + # Verify response text is in span data + assert SPANDATA.GEN_AI_RESPONSE_TEXT in span["data"] + + response_text = span["data"][SPANDATA.GEN_AI_RESPONSE_TEXT] + + # For a single response, set_data_normalized unpacks the list, so it's the string directly + assert isinstance(response_text, str) + assert response_text == "the model response" + + # Make sure it's NOT a JSON string containing a dict (the old buggy format) + # The old format was like '{"content": "...", "role": "assistant", ...}' + try: + parsed = json.loads(response_text) + # If it parses as JSON, it should NOT be a dict + assert not isinstance(parsed, dict), "Response text should not be a dict" + except json.JSONDecodeError: + # If it's not valid JSON, that's fine - it's just the raw string + pass + + +def test_chat_completion_with_tool_calls(sentry_init, capture_events): + """Test that tool calls are properly extracted to gen_ai.response.tool_calls.""" + sentry_init( + integrations=[OpenAIIntegration(include_prompts=True)], + traces_sample_rate=1.0, + send_default_pii=True, + ) + events = capture_events() + + # Create a response with tool calls using proper OpenAI types + tool_call_response = ChatCompletion( + id="chat-id", + choices=[ + Choice( + index=0, + finish_reason="tool_calls", + message=ChatCompletionMessage( + role="assistant", + content=None, # Content is None when there are tool calls + tool_calls=[ + ChatCompletionMessageToolCall( + id="call_123", + type="function", + function=ToolCallFunction( + name="get_weather", + arguments='{"location": "Paris"}', + ), + ), + ], + ), + ) + ], + created=10000000, + model="response-model-id", + object="chat.completion", + usage=CompletionUsage( + completion_tokens=10, + prompt_tokens=20, + total_tokens=30, + ), + ) + + client = OpenAI(api_key="z") + client.chat.completions._post = mock.Mock(return_value=tool_call_response) + + with start_transaction(name="openai tx"): + client.chat.completions.create( + model="some-model", + messages=[{"role": "user", "content": "What's the weather in Paris?"}], + ) + + (event,) = events + span = event["spans"][0] + + # Response text should NOT be present when content is None + assert SPANDATA.GEN_AI_RESPONSE_TEXT not in span["data"] + + # Tool calls should be extracted + assert SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS in span["data"] + tool_calls_data = span["data"][SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS] + + # Should be serialized as JSON + assert isinstance(tool_calls_data, str) + parsed_tool_calls = json.loads(tool_calls_data) + + assert isinstance(parsed_tool_calls, list) + assert len(parsed_tool_calls) == 1 + assert parsed_tool_calls[0]["id"] == "call_123" + assert parsed_tool_calls[0]["type"] == "function" + assert parsed_tool_calls[0]["function"]["name"] == "get_weather" + + +def test_chat_completion_with_content_and_tool_calls(sentry_init, capture_events): + """Test that both content and tool calls are captured when both are present.""" + sentry_init( + integrations=[OpenAIIntegration(include_prompts=True)], + traces_sample_rate=1.0, + send_default_pii=True, + ) + events = capture_events() + + # Create a response with both content and tool calls using proper OpenAI types + response_with_both = ChatCompletion( + id="chat-id", + choices=[ + Choice( + index=0, + finish_reason="tool_calls", + message=ChatCompletionMessage( + role="assistant", + content="I'll check the weather for you.", + tool_calls=[ + ChatCompletionMessageToolCall( + id="call_456", + type="function", + function=ToolCallFunction( + name="get_weather", + arguments='{"location": "London"}', + ), + ), + ], + ), + ) + ], + created=10000000, + model="response-model-id", + object="chat.completion", + usage=CompletionUsage( + completion_tokens=15, + prompt_tokens=25, + total_tokens=40, + ), + ) + + client = OpenAI(api_key="z") + client.chat.completions._post = mock.Mock(return_value=response_with_both) + + with start_transaction(name="openai tx"): + client.chat.completions.create( + model="some-model", + messages=[{"role": "user", "content": "What's the weather in London?"}], + ) + + (event,) = events + span = event["spans"][0] + + # Both should be present + assert SPANDATA.GEN_AI_RESPONSE_TEXT in span["data"] + assert SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS in span["data"] + + # Verify response text - single element list gets unpacked to the element + response_text = span["data"][SPANDATA.GEN_AI_RESPONSE_TEXT] + assert response_text == "I'll check the weather for you." + + # Verify tool calls - single element list gets unpacked, then re-serialized as JSON + tool_calls_data = span["data"][SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS] + assert isinstance(tool_calls_data, str) + tool_calls = json.loads(tool_calls_data) + assert isinstance(tool_calls, list) + assert len(tool_calls) == 1 + assert tool_calls[0]["function"]["name"] == "get_weather" + + +def test_chat_completion_multiple_choices(sentry_init, capture_events): + """Test that multiple choices are all captured in the response text.""" + sentry_init( + integrations=[OpenAIIntegration(include_prompts=True)], + traces_sample_rate=1.0, + send_default_pii=True, + ) + events = capture_events() + + # Create a response with multiple choices + multi_choice_response = ChatCompletion( + id="chat-id", + choices=[ + Choice( + index=0, + finish_reason="stop", + message=ChatCompletionMessage( + role="assistant", content="Response option 1" + ), + ), + Choice( + index=1, + finish_reason="stop", + message=ChatCompletionMessage( + role="assistant", content="Response option 2" + ), + ), + Choice( + index=2, + finish_reason="stop", + message=ChatCompletionMessage( + role="assistant", content="Response option 3" + ), + ), + ], + created=10000000, + model="response-model-id", + object="chat.completion", + usage=CompletionUsage( + completion_tokens=30, + prompt_tokens=20, + total_tokens=50, + ), + ) + + client = OpenAI(api_key="z") + client.chat.completions._post = mock.Mock(return_value=multi_choice_response) + + with start_transaction(name="openai tx"): + client.chat.completions.create( + model="some-model", + messages=[{"role": "user", "content": "Give me options"}], + n=3, + ) + + (event,) = events + span = event["spans"][0] + + assert SPANDATA.GEN_AI_RESPONSE_TEXT in span["data"] + response_text = json.loads(span["data"][SPANDATA.GEN_AI_RESPONSE_TEXT]) + + # Should have all 3 responses as strings + assert len(response_text) == 3 + assert response_text[0] == "Response option 1" + assert response_text[1] == "Response option 2" + assert response_text[2] == "Response option 3" + + # All should be strings + for item in response_text: + assert isinstance(item, str) From bd781654c11ef4f1892ad8891296da92e250bb60 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Thu, 15 Jan 2026 14:01:42 +0100 Subject: [PATCH 13/14] feat(ai): Add shared content transformation functions for multimodal AI messages Add transform_content_part() and transform_message_content() functions to standardize content part handling across all AI integrations. These functions transform various SDK-specific formats (OpenAI, Anthropic, Google, LangChain) into a unified format: - blob: base64-encoded binary data - uri: URL references (including file URIs) - file: file ID references Also adds get_modality_from_mime_type() helper to infer content modality (image/audio/video/document) from MIME types. --- sentry_sdk/ai/utils.py | 237 ++++++++++++++++++ tests/test_ai_monitoring.py | 484 ++++++++++++++++++++++++++++++++++++ 2 files changed, 721 insertions(+) diff --git a/sentry_sdk/ai/utils.py b/sentry_sdk/ai/utils.py index 71f7544a1c..b7b3b790d2 100644 --- a/sentry_sdk/ai/utils.py +++ b/sentry_sdk/ai/utils.py @@ -72,6 +72,243 @@ def parse_data_uri(url: str) -> "Tuple[str, str]": return mime_type, content +def get_modality_from_mime_type(mime_type: str) -> str: + """ + Infer the content modality from a MIME type string. + + Args: + mime_type: A MIME type string (e.g., "image/jpeg", "audio/mp3") + + Returns: + One of: "image", "audio", "video", or "document" + Defaults to "image" for unknown or empty MIME types. + + Examples: + "image/jpeg" -> "image" + "audio/mp3" -> "audio" + "video/mp4" -> "video" + "application/pdf" -> "document" + "text/plain" -> "document" + """ + if not mime_type: + return "image" # Default fallback + + mime_lower = mime_type.lower() + if mime_lower.startswith("image/"): + return "image" + elif mime_lower.startswith("audio/"): + return "audio" + elif mime_lower.startswith("video/"): + return "video" + elif mime_lower.startswith("application/") or mime_lower.startswith("text/"): + return "document" + else: + return "image" # Default fallback for unknown types + + +def transform_content_part( + content_part: "Dict[str, Any]", +) -> "Optional[Dict[str, Any]]": + """ + Transform a content part from various AI SDK formats to Sentry's standardized format. + + Supported input formats: + - OpenAI/LiteLLM: {"type": "image_url", "image_url": {"url": "..."}} + - Anthropic: {"type": "image|document", "source": {"type": "base64|url|file", ...}} + - Google: {"inline_data": {...}} or {"file_data": {...}} + - Generic: {"type": "image|audio|video|file", "base64|url|file_id": "...", "mime_type": "..."} + + Output format (one of): + - {"type": "blob", "modality": "...", "mime_type": "...", "content": "..."} + - {"type": "uri", "modality": "...", "mime_type": "...", "uri": "..."} + - {"type": "file", "modality": "...", "mime_type": "...", "file_id": "..."} + + Args: + content_part: A dictionary representing a content part from an AI SDK + + Returns: + A transformed dictionary in standardized format, or None if the format + is unrecognized or transformation fails. + """ + if not isinstance(content_part, dict): + return None + + block_type = content_part.get("type") + + # Handle OpenAI/LiteLLM image_url format + # {"type": "image_url", "image_url": {"url": "..."}} or {"type": "image_url", "image_url": "..."} + if block_type == "image_url": + image_url_data = content_part.get("image_url") + if isinstance(image_url_data, str): + url = image_url_data + elif isinstance(image_url_data, dict): + url = image_url_data.get("url", "") + else: + return None + + if not url: + return None + + # Check if it's a data URI (base64 encoded) + if url.startswith("data:"): + try: + mime_type, content = parse_data_uri(url) + return { + "type": "blob", + "modality": get_modality_from_mime_type(mime_type), + "mime_type": mime_type, + "content": content, + } + except ValueError: + # If parsing fails, return as URI + return { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": url, + } + else: + # Regular URL + return { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": url, + } + + # Handle Anthropic format with source dict + # {"type": "image|document", "source": {"type": "base64|url|file", "media_type": "...", "data|url|file_id": "..."}} + if block_type in ("image", "document") and "source" in content_part: + source = content_part.get("source") + if not isinstance(source, dict): + return None + + source_type = source.get("type") + media_type = source.get("media_type", "") + modality = ( + "document" + if block_type == "document" + else get_modality_from_mime_type(media_type) + ) + + if source_type == "base64": + return { + "type": "blob", + "modality": modality, + "mime_type": media_type, + "content": source.get("data", ""), + } + elif source_type == "url": + return { + "type": "uri", + "modality": modality, + "mime_type": media_type, + "uri": source.get("url", ""), + } + elif source_type == "file": + return { + "type": "file", + "modality": modality, + "mime_type": media_type, + "file_id": source.get("file_id", ""), + } + return None + + # Handle Google inline_data format + # {"inline_data": {"mime_type": "...", "data": "..."}} + if "inline_data" in content_part: + inline_data = content_part.get("inline_data") + if isinstance(inline_data, dict): + mime_type = inline_data.get("mime_type", "") + return { + "type": "blob", + "modality": get_modality_from_mime_type(mime_type), + "mime_type": mime_type, + "content": inline_data.get("data", ""), + } + return None + + # Handle Google file_data format + # {"file_data": {"mime_type": "...", "file_uri": "..."}} + if "file_data" in content_part: + file_data = content_part.get("file_data") + if isinstance(file_data, dict): + mime_type = file_data.get("mime_type", "") + return { + "type": "uri", + "modality": get_modality_from_mime_type(mime_type), + "mime_type": mime_type, + "uri": file_data.get("file_uri", ""), + } + return None + + # Handle generic format with direct fields (LangChain style) + # {"type": "image|audio|video|file", "base64|url|file_id": "...", "mime_type": "..."} + if block_type in ("image", "audio", "video", "file"): + mime_type = content_part.get("mime_type", "") + modality = block_type if block_type != "file" else "document" + + # Check for base64 encoded content + if "base64" in content_part: + return { + "type": "blob", + "modality": modality, + "mime_type": mime_type, + "content": content_part.get("base64", ""), + } + # Check for URL reference + elif "url" in content_part: + return { + "type": "uri", + "modality": modality, + "mime_type": mime_type, + "uri": content_part.get("url", ""), + } + # Check for file_id reference + elif "file_id" in content_part: + return { + "type": "file", + "modality": modality, + "mime_type": mime_type, + "file_id": content_part.get("file_id", ""), + } + + # Unrecognized format + return None + + +def transform_message_content(content: "Any") -> "Any": + """ + Transform message content, handling both string content and list of content blocks. + + For list content, each item is transformed using transform_content_part(). + Items that cannot be transformed (return None) are kept as-is. + + Args: + content: Message content - can be a string, list of content blocks, or other + + Returns: + - String content: returned as-is + - List content: list with each transformable item converted to standardized format + - Other: returned as-is + """ + if isinstance(content, str): + return content + + if isinstance(content, (list, tuple)): + transformed = [] + for item in content: + if isinstance(item, dict): + result = transform_content_part(item) + # If transformation succeeded, use the result; otherwise keep original + transformed.append(result if result is not None else item) + else: + transformed.append(item) + return transformed + + return content + + def _normalize_data(data: "Any", unpack: bool = True) -> "Any": # convert pydantic data (e.g. OpenAI v1+) to json compatible format if hasattr(data, "model_dump"): diff --git a/tests/test_ai_monitoring.py b/tests/test_ai_monitoring.py index 1ff354f473..209d24e502 100644 --- a/tests/test_ai_monitoring.py +++ b/tests/test_ai_monitoring.py @@ -19,6 +19,9 @@ _find_truncation_index, parse_data_uri, redact_blob_message_parts, + get_modality_from_mime_type, + transform_content_part, + transform_message_content, ) from sentry_sdk.serializer import serialize from sentry_sdk.utils import safe_serialize @@ -842,3 +845,484 @@ def test_handles_uri_without_data_prefix(self): assert mime_type == "image/jpeg" assert content == "/9j/4AAQ" + + +class TestGetModalityFromMimeType: + def test_image_mime_types(self): + """Test that image MIME types return 'image' modality""" + assert get_modality_from_mime_type("image/jpeg") == "image" + assert get_modality_from_mime_type("image/png") == "image" + assert get_modality_from_mime_type("image/gif") == "image" + assert get_modality_from_mime_type("image/webp") == "image" + assert get_modality_from_mime_type("IMAGE/JPEG") == "image" # case insensitive + + def test_audio_mime_types(self): + """Test that audio MIME types return 'audio' modality""" + assert get_modality_from_mime_type("audio/mp3") == "audio" + assert get_modality_from_mime_type("audio/wav") == "audio" + assert get_modality_from_mime_type("audio/ogg") == "audio" + assert get_modality_from_mime_type("AUDIO/MP3") == "audio" # case insensitive + + def test_video_mime_types(self): + """Test that video MIME types return 'video' modality""" + assert get_modality_from_mime_type("video/mp4") == "video" + assert get_modality_from_mime_type("video/webm") == "video" + assert get_modality_from_mime_type("video/quicktime") == "video" + assert get_modality_from_mime_type("VIDEO/MP4") == "video" # case insensitive + + def test_document_mime_types(self): + """Test that application and text MIME types return 'document' modality""" + assert get_modality_from_mime_type("application/pdf") == "document" + assert get_modality_from_mime_type("application/json") == "document" + assert get_modality_from_mime_type("text/plain") == "document" + assert get_modality_from_mime_type("text/html") == "document" + + def test_empty_mime_type_returns_image(self): + """Test that empty MIME type defaults to 'image'""" + assert get_modality_from_mime_type("") == "image" + + def test_none_mime_type_returns_image(self): + """Test that None-like values default to 'image'""" + assert get_modality_from_mime_type(None) == "image" + + def test_unknown_mime_type_returns_image(self): + """Test that unknown MIME types default to 'image'""" + assert get_modality_from_mime_type("unknown/type") == "image" + assert get_modality_from_mime_type("custom/format") == "image" + + +class TestTransformContentPart: + # OpenAI/LiteLLM format tests + def test_openai_image_url_with_data_uri(self): + """Test transforming OpenAI image_url with base64 data URI""" + content_part = { + "type": "image_url", + "image_url": {"url": ""}, + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQSkZJRg==", + } + + def test_openai_image_url_with_regular_url(self): + """Test transforming OpenAI image_url with regular URL""" + content_part = { + "type": "image_url", + "image_url": {"url": "https://example.com/image.jpg"}, + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": "https://example.com/image.jpg", + } + + def test_openai_image_url_string_format(self): + """Test transforming OpenAI image_url where image_url is a string""" + content_part = { + "type": "image_url", + "image_url": "https://example.com/image.jpg", + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": "https://example.com/image.jpg", + } + + def test_openai_image_url_invalid_data_uri(self): + """Test transforming OpenAI image_url with invalid data URI falls back to URI""" + content_part = { + "type": "image_url", + "image_url": {"url": "data:image/jpeg;base64"}, # Missing comma + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": "data:image/jpeg;base64", + } + + # Anthropic format tests + def test_anthropic_image_base64(self): + """Test transforming Anthropic image with base64 source""" + content_part = { + "type": "image", + "source": { + "type": "base64", + "media_type": "image/png", + "data": "iVBORw0KGgo=", + }, + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/png", + "content": "iVBORw0KGgo=", + } + + def test_anthropic_image_url(self): + """Test transforming Anthropic image with URL source""" + content_part = { + "type": "image", + "source": { + "type": "url", + "media_type": "image/jpeg", + "url": "https://example.com/image.jpg", + }, + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "image", + "mime_type": "image/jpeg", + "uri": "https://example.com/image.jpg", + } + + def test_anthropic_image_file(self): + """Test transforming Anthropic image with file source""" + content_part = { + "type": "image", + "source": { + "type": "file", + "media_type": "image/jpeg", + "file_id": "file_123", + }, + } + result = transform_content_part(content_part) + + assert result == { + "type": "file", + "modality": "image", + "mime_type": "image/jpeg", + "file_id": "file_123", + } + + def test_anthropic_document_base64(self): + """Test transforming Anthropic document with base64 source""" + content_part = { + "type": "document", + "source": { + "type": "base64", + "media_type": "application/pdf", + "data": "JVBERi0xLjQ=", + }, + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "document", + "mime_type": "application/pdf", + "content": "JVBERi0xLjQ=", + } + + def test_anthropic_document_url(self): + """Test transforming Anthropic document with URL source""" + content_part = { + "type": "document", + "source": { + "type": "url", + "media_type": "application/pdf", + "url": "https://example.com/doc.pdf", + }, + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "document", + "mime_type": "application/pdf", + "uri": "https://example.com/doc.pdf", + } + + # Google format tests + def test_google_inline_data(self): + """Test transforming Google inline_data format""" + content_part = { + "inline_data": { + "mime_type": "image/jpeg", + "data": "/9j/4AAQSkZJRg==", + } + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQSkZJRg==", + } + + def test_google_file_data(self): + """Test transforming Google file_data format""" + content_part = { + "file_data": { + "mime_type": "video/mp4", + "file_uri": "gs://bucket/video.mp4", + } + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "video", + "mime_type": "video/mp4", + "uri": "gs://bucket/video.mp4", + } + + def test_google_inline_data_audio(self): + """Test transforming Google inline_data with audio""" + content_part = { + "inline_data": { + "mime_type": "audio/wav", + "data": "UklGRiQA", + } + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "audio", + "mime_type": "audio/wav", + "content": "UklGRiQA", + } + + # Generic format tests (LangChain style) + def test_generic_image_base64(self): + """Test transforming generic format with base64""" + content_part = { + "type": "image", + "base64": "/9j/4AAQSkZJRg==", + "mime_type": "image/jpeg", + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQSkZJRg==", + } + + def test_generic_audio_url(self): + """Test transforming generic format with URL""" + content_part = { + "type": "audio", + "url": "https://example.com/audio.mp3", + "mime_type": "audio/mp3", + } + result = transform_content_part(content_part) + + assert result == { + "type": "uri", + "modality": "audio", + "mime_type": "audio/mp3", + "uri": "https://example.com/audio.mp3", + } + + def test_generic_file_with_file_id(self): + """Test transforming generic format with file_id""" + content_part = { + "type": "file", + "file_id": "file_456", + "mime_type": "application/pdf", + } + result = transform_content_part(content_part) + + assert result == { + "type": "file", + "modality": "document", + "mime_type": "application/pdf", + "file_id": "file_456", + } + + def test_generic_video_base64(self): + """Test transforming generic video format""" + content_part = { + "type": "video", + "base64": "AAAA", + "mime_type": "video/mp4", + } + result = transform_content_part(content_part) + + assert result == { + "type": "blob", + "modality": "video", + "mime_type": "video/mp4", + "content": "AAAA", + } + + # Edge cases and error handling + def test_text_block_returns_none(self): + """Test that text blocks return None (not transformed)""" + content_part = {"type": "text", "text": "Hello world"} + result = transform_content_part(content_part) + + assert result is None + + def test_non_dict_returns_none(self): + """Test that non-dict input returns None""" + assert transform_content_part("string") is None + assert transform_content_part(123) is None + assert transform_content_part(None) is None + assert transform_content_part([1, 2, 3]) is None + + def test_empty_dict_returns_none(self): + """Test that empty dict returns None""" + assert transform_content_part({}) is None + + def test_unknown_type_returns_none(self): + """Test that unknown type returns None""" + content_part = {"type": "unknown", "data": "something"} + assert transform_content_part(content_part) is None + + def test_openai_image_url_empty_url_returns_none(self): + """Test that image_url with empty URL returns None""" + content_part = {"type": "image_url", "image_url": {"url": ""}} + assert transform_content_part(content_part) is None + + def test_anthropic_invalid_source_returns_none(self): + """Test that Anthropic format with invalid source returns None""" + content_part = {"type": "image", "source": "not_a_dict"} + assert transform_content_part(content_part) is None + + def test_anthropic_unknown_source_type_returns_none(self): + """Test that Anthropic format with unknown source type returns None""" + content_part = { + "type": "image", + "source": {"type": "unknown", "data": "something"}, + } + assert transform_content_part(content_part) is None + + def test_google_inline_data_not_dict_returns_none(self): + """Test that Google inline_data with non-dict value returns None""" + content_part = {"inline_data": "not_a_dict"} + assert transform_content_part(content_part) is None + + def test_google_file_data_not_dict_returns_none(self): + """Test that Google file_data with non-dict value returns None""" + content_part = {"file_data": "not_a_dict"} + assert transform_content_part(content_part) is None + + +class TestTransformMessageContent: + def test_string_content_returned_as_is(self): + """Test that string content is returned unchanged""" + content = "Hello, world!" + result = transform_message_content(content) + + assert result == "Hello, world!" + + def test_list_with_transformable_items(self): + """Test transforming a list with transformable content parts""" + content = [ + {"type": "text", "text": "What's in this image?"}, + { + "type": "image_url", + "image_url": {"url": ""}, + }, + ] + result = transform_message_content(content) + + assert len(result) == 2 + # Text block should be unchanged (transform returns None, so original kept) + assert result[0] == {"type": "text", "text": "What's in this image?"} + # Image should be transformed + assert result[1] == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQ", + } + + def test_list_with_non_dict_items(self): + """Test that non-dict items in list are kept as-is""" + content = ["text string", 123, {"type": "text", "text": "hi"}] + result = transform_message_content(content) + + assert result == ["text string", 123, {"type": "text", "text": "hi"}] + + def test_tuple_content(self): + """Test that tuple content is also handled""" + content = ( + {"type": "text", "text": "Hello"}, + { + "type": "image_url", + "image_url": {"url": "https://example.com/img.jpg"}, + }, + ) + result = transform_message_content(content) + + assert len(result) == 2 + assert result[0] == {"type": "text", "text": "Hello"} + assert result[1] == { + "type": "uri", + "modality": "image", + "mime_type": "", + "uri": "https://example.com/img.jpg", + } + + def test_other_types_returned_as_is(self): + """Test that other types are returned unchanged""" + assert transform_message_content(123) == 123 + assert transform_message_content(None) is None + assert transform_message_content({"key": "value"}) == {"key": "value"} + + def test_mixed_content_types(self): + """Test transforming mixed content with multiple formats""" + content = [ + {"type": "text", "text": "Look at these:"}, + { + "type": "image_url", + "image_url": {"url": ""}, + }, + { + "type": "image", + "source": { + "type": "base64", + "media_type": "image/jpeg", + "data": "/9j/4AAQ", + }, + }, + {"inline_data": {"mime_type": "audio/wav", "data": "UklGRiQA"}}, + ] + result = transform_message_content(content) + + assert len(result) == 4 + assert result[0] == {"type": "text", "text": "Look at these:"} + assert result[1] == { + "type": "blob", + "modality": "image", + "mime_type": "image/png", + "content": "iVBORw0", + } + assert result[2] == { + "type": "blob", + "modality": "image", + "mime_type": "image/jpeg", + "content": "/9j/4AAQ", + } + assert result[3] == { + "type": "blob", + "modality": "audio", + "mime_type": "audio/wav", + "content": "UklGRiQA", + } + + def test_empty_list(self): + """Test that empty list is returned as empty list""" + assert transform_message_content([]) == [] From df59f49159950fd031480108f60ddbdd47ef5833 Mon Sep 17 00:00:00 2001 From: Fabian Schindler Date: Thu, 15 Jan 2026 14:03:50 +0100 Subject: [PATCH 14/14] refactor(openai): Use shared transform_message_content from ai/utils Replace local _convert_message_parts function with the shared transform_message_content function to deduplicate code across AI integrations. --- sentry_sdk/integrations/openai.py | 92 +--------------- tests/integrations/openai/test_openai.py | 134 +++++++++-------------- 2 files changed, 59 insertions(+), 167 deletions(-) diff --git a/sentry_sdk/integrations/openai.py b/sentry_sdk/integrations/openai.py index 8937867ba4..9a69f601db 100644 --- a/sentry_sdk/integrations/openai.py +++ b/sentry_sdk/integrations/openai.py @@ -8,7 +8,7 @@ extract_response_output, set_data_normalized, normalize_message_roles, - parse_data_uri, + transform_message_content, truncate_and_annotate_messages, ) from sentry_sdk.consts import SPANDATA @@ -22,7 +22,7 @@ reraise, ) -from typing import TYPE_CHECKING, Dict +from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Any, Iterable, List, Optional, Callable, AsyncIterator, Iterator @@ -184,89 +184,6 @@ def _calculate_token_usage( ) -def _convert_message_parts(messages: "List[Dict[str, Any]]") -> "List[Dict[str, Any]]": - """ - Convert the message parts from OpenAI format to the `gen_ai.request.messages` format. - e.g: - { - "role": "user", - "content": [ - { - "text": "How many ponies do you see in the image?", - "type": "text" - }, - { - "type": "image_url", - "image_url": { - "url": "data:image/jpeg;base64,...", - "detail": "high" - } - } - ] - } - becomes: - { - "role": "user", - "content": [ - { - "text": "How many ponies do you see in the image?", - "type": "text" - }, - { - "type": "blob", - "modality": "image", - "mime_type": "image/jpeg", - "content": "data:image/jpeg;base64,..." - } - ] - } - """ - - def _map_item(item: "Dict[str, Any]") -> "Dict[str, Any]": - if not isinstance(item, dict): - return item - - if item.get("type") == "image_url": - image_url = item.get("image_url") - if isinstance(image_url, str): - url = image_url - elif isinstance(image_url, dict): - url = image_url.get("url", "") - else: - url = "" - if url.startswith("data:"): - try: - mime_type, content = parse_data_uri(url) - return { - "type": "blob", - "modality": "image", - "mime_type": mime_type, - "content": content, - } - except ValueError: - # If parsing fails, return as URI - return { - "type": "uri", - "modality": "image", - "uri": url, - } - else: - return { - "type": "uri", - "modality": "image", - "uri": url, - } - return item - - for message in messages: - if not isinstance(message, dict): - continue - content = message.get("content") - if isinstance(content, list): - message["content"] = [_map_item(item) for item in content] - return messages - - def _set_input_data( span: "Span", kwargs: "dict[str, Any]", @@ -288,7 +205,10 @@ def _set_input_data( and integration.include_prompts ): normalized_messages = normalize_message_roles(messages) - normalized_messages = _convert_message_parts(normalized_messages) + # Transform content parts to standardized format + for message in normalized_messages: + if isinstance(message, dict) and "content" in message: + message["content"] = transform_message_content(message["content"]) scope = sentry_sdk.get_current_scope() messages_data = truncate_and_annotate_messages(normalized_messages, span, scope) diff --git a/tests/integrations/openai/test_openai.py b/tests/integrations/openai/test_openai.py index 10cf625ab7..2c1e32b1e4 100644 --- a/tests/integrations/openai/test_openai.py +++ b/tests/integrations/openai/test_openai.py @@ -47,9 +47,8 @@ from sentry_sdk.integrations.openai import ( OpenAIIntegration, _calculate_token_usage, - _convert_message_parts, ) -from sentry_sdk.ai.utils import MAX_GEN_AI_MESSAGE_BYTES +from sentry_sdk.ai.utils import MAX_GEN_AI_MESSAGE_BYTES, transform_message_content from sentry_sdk._types import AnnotatedValue from sentry_sdk.serializer import serialize @@ -1514,42 +1513,35 @@ def test_openai_message_role_mapping(sentry_init, capture_events): assert "ai" not in roles -def test_convert_message_parts_image_url_to_blob(): +def test_transform_message_content_image_url_to_blob(): """Test that OpenAI image_url message parts are correctly converted to blob format""" - messages = [ + content = [ { - "role": "user", - "content": [ - { - "text": "How many ponies do you see in the image?", - "type": "text", - }, - { - "type": "image_url", - "image_url": { - "url": "", - "detail": "high", - }, - }, - ], - } + "text": "How many ponies do you see in the image?", + "type": "text", + }, + { + "type": "image_url", + "image_url": { + "url": "", + "detail": "high", + }, + }, ] - converted = _convert_message_parts(messages) + converted = transform_message_content(content) - assert len(converted) == 1 - assert converted[0]["role"] == "user" - assert isinstance(converted[0]["content"], list) - assert len(converted[0]["content"]) == 2 + assert isinstance(converted, list) + assert len(converted) == 2 # First item (text) should remain unchanged - assert converted[0]["content"][0] == { + assert converted[0] == { "text": "How many ponies do you see in the image?", "type": "text", } # Second item (image_url) should be converted to blob format - blob_item = converted[0]["content"][1] + blob_item = converted[1] assert blob_item["type"] == "blob" assert blob_item["modality"] == "image" assert blob_item["mime_type"] == "image/jpeg" @@ -1558,104 +1550,84 @@ def test_convert_message_parts_image_url_to_blob(): assert "image_url" not in blob_item -def test_convert_message_parts_image_url_to_uri(): +def test_transform_message_content_image_url_to_uri(): """Test that OpenAI image_url with non-data URLs are converted to uri format""" - messages = [ + content = [ { - "role": "user", - "content": [ - { - "type": "image_url", - "image_url": { - "url": "https://example.com/image.jpg", - "detail": "low", - }, - }, - ], - } + "type": "image_url", + "image_url": { + "url": "https://example.com/image.jpg", + "detail": "low", + }, + }, ] - converted = _convert_message_parts(messages) + converted = transform_message_content(content) assert len(converted) == 1 - uri_item = converted[0]["content"][0] + uri_item = converted[0] assert uri_item["type"] == "uri" assert uri_item["uri"] == "https://example.com/image.jpg" # Verify the original image_url structure is replaced assert "image_url" not in uri_item -def test_convert_message_parts_malformed_data_uri(): +def test_transform_message_content_malformed_data_uri(): """Test that malformed data URIs are handled gracefully without crashing""" - messages = [ + content = [ { - "role": "user", - "content": [ - { - "type": "image_url", - "image_url": { - # Malformed: missing ;base64, and comma separator - "url": "data:image/jpeg", - }, - }, - ], - } + "type": "image_url", + "image_url": { + # Malformed: missing ;base64, and comma separator + "url": "", - }, - ], - } + "type": "image_url", + "image_url": "", + }, ] - converted = _convert_message_parts(messages) + converted = transform_message_content(content) assert len(converted) == 1 - item = converted[0]["content"][0] + item = converted[0] assert item["type"] == "blob" assert item["modality"] == "image" assert item["mime_type"] == "image/png"